Problem 3.32

An anti-hermitian (or skew-hermitian) operator is equal to minus its hermitian conjugate:

$$
\begin{equation*}
\hat{Q}^{\dagger}=-\hat{Q} \tag{3.111}
\end{equation*}
$$

(a) Show that the expectation value of an anti-hermitian operator is imaginary.
(b) Show that the eigenvalues of an anti-hermitian operator are imaginary.
(c) Show that the eigenvectors of an anti-hermitian operator belonging to distinct eigenvalues are orthogonal.
(d) Show that the commutator of two hermitian operators is anti-hermitian. How about the commutator of two anti-hermitian operators?
(e) Show that any operator \hat{Q} can be written as a sum of a hermitian operator \hat{A} and an anti-hermitian operator \hat{B}, and give expressions for \hat{A} and \hat{B} in terms of \hat{Q} and its adjoint \hat{Q}^{\dagger}.

Solution

Let \hat{A} be a hermitian operator $\left(\hat{A}^{\dagger}=\hat{A}\right)$, and let \hat{B} be an anti-hermitian operator $\left(\hat{B}^{\dagger}=-\hat{B}\right)$. Evaluate their expectation values.

$$
\left.\begin{array}{rlrl}
\langle A\rangle & =\langle\Psi| \hat{A}|\Psi\rangle & & \langle B\rangle
\end{array}\right)=\langle\Psi| \hat{B}|\Psi\rangle
$$

Therefore, the expectation value of a hermitian operator is real, and the expectation value of an anti-hermitian operator is purely imaginary. Now consider the eigenvalue problems for \hat{A} and \hat{B}.

$$
\hat{A}\left|f_{n}\right\rangle=a_{n}\left|f_{n}\right\rangle \quad \hat{B}\left|g_{n}\right\rangle=b_{n}\left|g_{n}\right\rangle
$$

Pre-multiply both sides of the left-hand equation by the bra $\left\langle f_{n}\right|$, and pre-multiply both sides of the right-hand equation by the bra $\left\langle g_{n}\right|$.

$$
\begin{aligned}
\left\langle f_{n}\right| \cdot\left(\hat{A}\left|f_{n}\right\rangle\right) & =\left\langle f_{n}\right| \cdot a_{n}\left|f_{n}\right\rangle & & \left\langle g_{n}\right| \cdot\left(\hat{B}\left|g_{n}\right\rangle\right)=\left\langle g_{n}\right| \cdot b_{n}\left|g_{n}\right\rangle \\
{\left[\left(\left\langle f_{n}\right| \hat{A}^{\dagger}\right) \cdot\left|f_{n}\right\rangle\right]^{*} } & =a_{n}\left\langle f_{n} \mid f_{n}\right\rangle & & {\left[\left(\left\langle g_{n}\right| \hat{B}^{\dagger}\right) \cdot\left|g_{n}\right\rangle\right]^{*}=b_{n}\left\langle g_{n} \mid g_{n}\right\rangle }
\end{aligned}
$$

Use the fact that \hat{A} and \hat{B} are hermitian and anti-hermitian, respectively.

$$
\begin{aligned}
& {\left[\left(\left\langle f_{n}\right| \hat{A}\right) \cdot\left|f_{n}\right\rangle\right]^{*}=a_{n}\left\langle f_{n} \mid f_{n}\right\rangle} \\
& {\left[\left(\left\langle g_{n}\right|-\hat{B}\right) \cdot\left|g_{n}\right\rangle\right]^{*}=b_{n}\left\langle g_{n} \mid g_{n}\right\rangle} \\
& {\left[\left\langle f_{n}\right| \cdot\left(\hat{A}\left|f_{n}\right\rangle\right)\right]^{*}=a_{n}\left\langle f_{n} \mid f_{n}\right\rangle} \\
& {\left[-\left\langle g_{n}\right| \cdot\left(\hat{B}\left|g_{n}\right\rangle\right)\right]^{*}=b_{n}\left\langle g_{n} \mid g_{n}\right\rangle} \\
& {\left[\left\langle f_{n}\right| \cdot\left(a_{n}\left|f_{n}\right\rangle\right)\right]^{*}=a_{n}\left\langle f_{n} \mid f_{n}\right\rangle} \\
& {\left[-\left\langle g_{n}\right| \cdot\left(b_{n}\left|g_{n}\right\rangle\right)\right]^{*}=b_{n}\left\langle g_{n} \mid g_{n}\right\rangle} \\
& {\left[a_{n}\left\langle f_{n} \mid f_{n}\right\rangle\right]^{*}=a_{n}\left\langle f_{n} \mid f_{n}\right\rangle} \\
& a_{n}^{*}\left\langle f_{n} \mid f_{n}\right\rangle^{*}=a_{n}\left\langle f_{n} \mid f_{n}\right\rangle \\
& a_{n}^{*}\left\langle f_{n} \mid f_{n}\right\rangle=a_{n}\left\langle f_{n} \mid f_{n}\right\rangle \\
& 0=\left(a_{n}-a_{n}^{*}\right)\left\langle f_{n} \mid f_{n}\right\rangle \\
& {\left[-b_{n}\left\langle g_{n} \mid g_{n}\right\rangle\right]^{*}=b_{n}\left\langle g_{n} \mid g_{n}\right\rangle} \\
& -b_{n}^{*}\left\langle g_{n} \mid g_{n}\right\rangle^{*}=b_{n}\left\langle g_{n} \mid g_{n}\right\rangle \\
& -b_{n}^{*}\left\langle g_{n} \mid g_{n}\right\rangle=b_{n}\left\langle g_{n} \mid g_{n}\right\rangle \\
& 0=\left(b_{n}+b_{n}^{*}\right)\left\langle g_{n} \mid g_{n}\right\rangle
\end{aligned}
$$

Since the eigenvectors can't be zero, the inner products are strictly positive $\left(\left\langle f_{n} \mid f_{n}\right\rangle>0\right.$ and $\left.\left\langle g_{n} \mid g_{n}\right\rangle>0\right)$.

$$
\begin{array}{rr}
0=a_{n}-a_{n}^{*} & 0=b_{n}+b_{n}^{*} \\
a_{n}^{*}=a_{n} & b_{n}^{*}=-b_{n}
\end{array}
$$

Therefore, the eigenvalues of a hermitian operator are real, and the eigenvalues of an anti-hermitian operator are purely imaginary. Assume that x_{n} and y_{n} are real numbers and that \hat{X} and \hat{Y} are hermitian and anti-hermitian operators, respectively. Consider the eigenvalue problem of another operator \hat{Q}.

$$
\begin{aligned}
\hat{Q}\left|h_{n}\right\rangle & =q_{n}\left|h_{n}\right\rangle \\
& =\left(x_{n}+i y_{n}\right)\left|h_{n}\right\rangle \\
& =x_{n}\left|h_{n}\right\rangle+i y_{n}\left|h_{n}\right\rangle \\
& =\hat{X}\left|h_{n}\right\rangle+\hat{Y}\left|h_{n}\right\rangle \\
& =(\hat{X}+\hat{Y})\left|h_{n}\right\rangle
\end{aligned}
$$

Therefore, any operator can be written as the sum of a hermitian operator and an anti-hermitian operator.

$$
\begin{equation*}
\hat{Q}=\hat{X}+\hat{Y} \tag{1}
\end{equation*}
$$

Take the hermitian conjugate of both sides.

$$
\begin{align*}
\hat{Q}^{\dagger} & =(\hat{X}+\hat{Y})^{\dagger} \\
& =\hat{X}^{\dagger}+\hat{Y}^{\dagger} \\
& =\hat{X}-\hat{Y} \tag{2}
\end{align*}
$$

Adding the respective sides of equations (1) and (2) yields

$$
\hat{Q}+\hat{Q}^{\dagger}=2 \hat{X}
$$

whereas subtracting the respective sides of equations (1) and (2) yields

$$
\hat{Q}-\hat{Q}^{\dagger}=2 \hat{Y} .
$$

Therefore, the following combinations of \hat{Q} and \hat{Q}^{\dagger} produce a hermitian operator \hat{X} and an anti-hermitian operator \hat{Y}.

$$
\begin{aligned}
& \hat{X}=\frac{\hat{Q}+\hat{Q}^{\dagger}}{2} \\
& \hat{Y}=\frac{\hat{Q}-\hat{Q}^{\dagger}}{2}
\end{aligned}
$$

This can be verified.

$$
\begin{aligned}
& \hat{X}^{\dagger}=\frac{\hat{Q}^{\dagger}+\hat{Q}}{2}=\frac{\hat{Q}+\hat{Q}^{\dagger}}{2}=\hat{X} \\
& \hat{Y}^{\dagger}=\frac{\hat{Q}^{\dagger}-\hat{Q}}{2}=-\frac{\hat{Q}-\hat{Q}^{\dagger}}{2}=-\hat{Y}
\end{aligned}
$$

Reconsider the eigenvalue problems for \hat{A} and \hat{B}.

$$
\hat{A}\left|f_{n}\right\rangle=a_{n}\left|f_{n}\right\rangle \quad \hat{B}\left|g_{n}\right\rangle=b_{n}\left|g_{n}\right\rangle
$$

Pre-multiply both sides of the left-hand equation by the bra $\left\langle f_{m}\right|$, and pre-multiply both sides of the right-hand equation by the bra $\left\langle g_{m}\right|$. Here $n \neq m$.

$$
\begin{aligned}
\left\langle f_{m}\right| \cdot\left(\hat{A}\left|f_{n}\right\rangle\right) & =\left\langle f_{m}\right| \cdot a_{n}\left|f_{n}\right\rangle & & \left\langle g_{m}\right| \cdot\left(\hat{B}\left|g_{n}\right\rangle\right)=\left\langle g_{m}\right| \cdot b_{n}\left|g_{n}\right\rangle \\
{\left[\left(\left\langle f_{n}\right| \hat{A}^{\dagger}\right) \cdot\left|f_{m}\right\rangle\right]^{*} } & =a_{n}\left\langle f_{m} \mid f_{n}\right\rangle & & {\left.\left[\left\langle g_{n}\right| \hat{B}^{\dagger}\right) \cdot\left|g_{m}\right\rangle\right]^{*}=b_{n}\left\langle g_{m} \mid g_{n}\right\rangle }
\end{aligned}
$$

Use the fact that \hat{A} and \hat{B} are hermitian and anti-hermitian, respectively.

$$
\begin{array}{rr}
{\left[\left(\left\langle f_{n}\right| \hat{A}\right) \cdot\left|f_{m}\right\rangle\right]^{*}=a_{n}\left\langle f_{m} \mid f_{n}\right\rangle} & {\left[\left(\left\langle g_{n}\right|-\hat{B}\right) \cdot\left|g_{m}\right\rangle\right]^{*}=b_{n}\left\langle g_{m} \mid g_{n}\right\rangle} \\
{\left[\left\langle f_{n}\right| \cdot\left(\hat{A}\left|f_{m}\right\rangle\right)\right]^{*}=a_{n}\left\langle f_{m} \mid f_{n}\right\rangle} & {\left[-\left\langle g_{n}\right| \cdot\left(\hat{B}\left|g_{m}\right\rangle\right)\right]^{*}=b_{n}\left\langle g_{m} \mid g_{n}\right\rangle} \\
{\left[\left\langle f_{n}\right| \cdot\left(a_{m}\left|f_{m}\right\rangle\right)\right]^{*}=a_{n}\left\langle f_{m} \mid f_{n}\right\rangle} & {\left[-\left\langle g_{n}\right| \cdot\left(b_{m}\left|g_{m}\right\rangle\right)\right]^{*}=b_{n}\left\langle g_{m} \mid g_{n}\right\rangle} \\
{\left[a_{m}\left\langle f_{n} \mid f_{m}\right\rangle\right]^{*}=a_{n}\left\langle f_{m} \mid f_{n}\right\rangle} & {\left[-b_{m}\left\langle g_{n} \mid g_{m}\right\rangle\right]^{*}=b_{n}\left\langle g_{m} \mid g_{n}\right\rangle} \\
a_{m}^{*}\left\langle f_{n} \mid f_{m}\right\rangle^{*}=a_{n}\left\langle f_{m} \mid f_{n}\right\rangle & -b_{m}^{*}\left\langle g_{n} \mid g_{m}\right\rangle^{*}=b_{n}\left\langle g_{m} \mid g_{n}\right\rangle \\
a_{m}^{*}\left\langle f_{m} \mid f_{n}\right\rangle=a_{n}\left\langle f_{m} \mid f_{n}\right\rangle & -b_{m}^{*}\left\langle g_{m} \mid g_{n}\right\rangle=b_{n}\left\langle g_{m} \mid g_{n}\right\rangle \\
0=\left(a_{n}-a_{m}^{*}\right)\left\langle f_{m} \mid f_{n}\right\rangle & 0=\left(b_{n}+b_{m}^{*}\right)\left\langle g_{m} \mid g_{n}\right\rangle
\end{array}
$$

Since distinct eigenvalues are generally unrelated, $a_{n}-a_{m}^{*} \neq 0$ and $b_{n}+b_{m}^{*} \neq 0$.

$$
0=\left\langle f_{m} \mid f_{n}\right\rangle \quad 0=\left\langle g_{m} \mid g_{n}\right\rangle
$$

Therefore, the eigenvectors of a hermitian operator are orthogonal, and the eigenvectors of an anti-hermitian operator are orthogonal. Let \hat{A}_{1} and \hat{A}_{2} be hermitian operators. Take the hermitian conjugate of their commutator.

$$
\begin{aligned}
{\left[\hat{A}_{1}, \hat{A}_{2}\right]^{\dagger} } & =\left(\hat{A}_{1} \hat{A}_{2}-\hat{A}_{2} \hat{A}_{1}\right)^{\dagger} \\
& =\left(\hat{A}_{1} \hat{A}_{2}\right)^{\dagger}-\left(\hat{A}_{2} \hat{A}_{1}\right)^{\dagger} \\
& =\left(\hat{A}_{2}^{\dagger} \hat{A}_{1}^{\dagger}\right)-\left(\hat{A}_{1}^{\dagger} \hat{A}_{2}^{\dagger}\right) \\
& =\left(\hat{A}_{2} \hat{A}_{1}\right)-\left(\hat{A}_{1} \hat{A}_{2}\right) \\
& =-\left(\hat{A}_{1} \hat{A}_{2}-\hat{A}_{2} \hat{A}_{1}\right) \\
& =-\left[\hat{A}_{1}, \hat{A}_{2}\right]
\end{aligned}
$$

Therefore, the commutator of two hermitian operators is anti-hermitian. Let \hat{B}_{1} and \hat{B}_{2} be anti-hermitian operators. Take the hermitian conjugate of their commutator.

$$
\begin{aligned}
{\left[\hat{B}_{1}, \hat{B}_{2}\right]^{\dagger} } & =\left(\hat{B}_{1} \hat{B}_{2}-\hat{B}_{2} \hat{B}_{1}\right)^{\dagger} \\
& =\left(\hat{B}_{1} \hat{B}_{2}\right)^{\dagger}-\left(\hat{B}_{2} \hat{B}_{1}\right)^{\dagger} \\
& =\left(\hat{B}_{2}^{\dagger} \hat{B}_{1}^{\dagger}\right)-\left(\hat{B}_{1}^{\dagger} \hat{B}_{2}^{\dagger}\right) \\
& =\left[\left(-\hat{B}_{2}\right)\left(-\hat{B}_{1}\right)-\left(-\hat{B}_{1}\right)\left(-\hat{B}_{2}\right)\right] \\
& =\left(\hat{B}_{2} \hat{B}_{1}\right)-\left(\hat{B}_{1} \hat{B}_{2}\right) \\
& =-\left(\hat{B}_{1} \hat{B}_{2}-\hat{B}_{2} \hat{B}_{1}\right) \\
& =-\left[\hat{B}_{1}, \hat{B}_{2}\right]
\end{aligned}
$$

Therefore, the commutator of two anti-hermitian operators is also anti-hermitian.

