Problem 3.32

An anti-hermitian (or skew-hermitian) operator is equal to *minus* its hermitian conjugate:

$$\hat{Q}^{\dagger} = -\hat{Q}.\tag{3.111}$$

- (a) Show that the expectation value of an anti-hermitian operator is imaginary.
- (b) Show that the eigenvalues of an anti-hermitian operator are imaginary.
- (c) Show that the eigenvectors of an anti-hermitian operator belonging to distinct eigenvalues are orthogonal.
- (d) Show that the commutator of two hermitian operators is anti-hermitian. How about the commutator of two *anti*-hermitian operators?
- (e) Show that any operator \hat{Q} can be written as a sum of a hermitian operator \hat{A} and an anti-hermitian operator \hat{B} , and give expressions for \hat{A} and \hat{B} in terms of \hat{Q} and its adjoint \hat{Q}^{\dagger} .

Solution

Let \hat{A} be a hermitian operator $(\hat{A}^{\dagger} = \hat{A})$, and let \hat{B} be an anti-hermitian operator $(\hat{B}^{\dagger} = -\hat{B})$. Evaluate their expectation values.

$$\begin{split} \langle A \rangle &= \langle \Psi \mid \hat{A} \mid \Psi \rangle & \langle B \rangle &= \langle \Psi \mid \hat{B} \mid \Psi \rangle \\ &= \langle \Psi \mid \hat{A}^{\dagger} \mid \Psi \rangle & = \langle \Psi \mid -\hat{B}^{\dagger} \mid \Psi \rangle \\ &= \langle \Psi \mid \hat{A}^{\dagger} \mid \Psi \rangle & = -\langle \Psi \mid \hat{B}^{\dagger} \mid \Psi \rangle \\ &= \left(\langle \Psi \mid \hat{A}^{\dagger} \right) \cdot \mid \Psi \rangle & = -\left(\langle \Psi \mid \hat{B}^{\dagger} \right) \cdot \mid \Psi \rangle \\ &= \left[\langle \Psi \mid \cdot \left(\hat{A} \mid \Psi \right) \right]^{*} & = -\left[\langle \Psi \mid \hat{A} \mid \Psi \right]^{*} \\ &= \left[\langle \Psi \mid \hat{A} \mid \Psi \rangle \right]^{*} & = -\left[\langle \Psi \mid \hat{B} \mid \Psi \rangle \right]^{*} \\ &= \langle A \rangle^{*} & = -\langle B \rangle^{*} \end{split}$$

Therefore, the expectation value of a hermitian operator is real, and the expectation value of an anti-hermitian operator is purely imaginary. Now consider the eigenvalue problems for \hat{A} and \hat{B} .

$$\hat{A}|f_n\rangle = a_n|f_n\rangle$$
 $\hat{B}|g_n\rangle = b_n|g_n\rangle$

Pre-multiply both sides of the left-hand equation by the bra $\langle f_n |$, and pre-multiply both sides of the right-hand equation by the bra $\langle g_n |$.

$$\langle f_n | \cdot \left(\hat{A} | f_n \rangle \right) = \langle f_n | \cdot a_n | f_n \rangle$$

$$\langle g_n | \cdot \left(\hat{B} | g_n \rangle \right) = \langle g_n | \cdot b_n | g_n \rangle$$

$$\left[\left(\langle f_n | \hat{A}^{\dagger} \right) \cdot | f_n \rangle \right]^* = a_n \langle f_n | f_n \rangle$$

$$\left[\left(\langle g_n | \hat{B}^{\dagger} \right) \cdot | g_n \rangle \right]^* = b_n \langle g_n | g_n \rangle$$

www.stemjock.com

Use the fact that \hat{A} and \hat{B} are hermitian and anti-hermitian, respectively.

$$\begin{split} \left[\left(\langle f_n | \hat{A} \right) \cdot | f_n \rangle \right]^* &= a_n \langle f_n | f_n \rangle & \left[\left(\langle g_n | -\hat{B} \right) \cdot | g_n \rangle \right]^* = b_n \langle g_n | g_n \rangle \\ &\left[\langle f_n | \cdot \left(\hat{A} | f_n \rangle \right) \right]^* = a_n \langle f_n | f_n \rangle & \left[- \langle g_n | \cdot \left(\hat{B} | g_n \rangle \right) \right]^* = b_n \langle g_n | g_n \rangle \\ &\left[\langle f_n | \cdot \left(a_n | f_n \rangle \right) \right]^* = a_n \langle f_n | f_n \rangle & \left[- \langle g_n | \cdot \left(b_n | g_n \rangle \right) \right]^* = b_n \langle g_n | g_n \rangle \\ &\left[a_n \langle f_n | f_n \rangle \right]^* = a_n \langle f_n | f_n \rangle & \left[-b_n \langle g_n | g_n \rangle \right]^* = b_n \langle g_n | g_n \rangle \\ &a_n^* \langle f_n | f_n \rangle^* = a_n \langle f_n | f_n \rangle & -b_n^* \langle g_n | g_n \rangle = b_n \langle g_n | g_n \rangle \\ &a_n^* \langle f_n | f_n \rangle = a_n \langle f_n | f_n \rangle & 0 = (b_n + b_n^*) \langle g_n | g_n \rangle \end{split}$$

Since the eigenvectors can't be zero, the inner products are strictly positive $(\langle f_n | f_n \rangle > 0$ and $\langle g_n | g_n \rangle > 0)$.

$$0 = a_n - a_n^* \qquad 0 = b_n + b_n^*$$
$$a_n^* = a_n \qquad b_n^* = -b_n$$

Therefore, the eigenvalues of a hermitian operator are real, and the eigenvalues of an anti-hermitian operator are purely imaginary. Assume that x_n and y_n are real numbers and that \hat{X} and \hat{Y} are hermitian and anti-hermitian operators, respectively. Consider the eigenvalue problem of another operator \hat{Q} .

$$\hat{Q}|h_n\rangle = q_n|h_n\rangle$$

$$= (x_n + iy_n)|h_n\rangle$$

$$= x_n|h_n\rangle + iy_n|h_n\rangle$$

$$= \hat{X}|h_n\rangle + \hat{Y}|h_n\rangle$$

$$= (\hat{X} + \hat{Y})|h_n\rangle$$

Therefore, any operator can be written as the sum of a hermitian operator and an anti-hermitian operator.

$$\hat{Q} = \hat{X} + \hat{Y} \tag{1}$$

Take the hermitian conjugate of both sides.

$$\hat{Q}^{\dagger} = \left(\hat{X} + \hat{Y}\right)^{\dagger}$$
$$= \hat{X}^{\dagger} + \hat{Y}^{\dagger}$$
$$= \hat{X} - \hat{Y}$$
(2)

Adding the respective sides of equations (1) and (2) yields

$$\hat{Q} + \hat{Q}^{\dagger} = 2\hat{X},$$

whereas subtracting the respective sides of equations (1) and (2) yields

$$\hat{Q} - \hat{Q}^{\dagger} = 2\hat{Y}.$$

Therefore, the following combinations of \hat{Q} and \hat{Q}^{\dagger} produce a hermitian operator \hat{X} and an anti-hermitian operator \hat{Y} .

$$\hat{X} = \frac{\hat{Q} + \hat{Q}^{\dagger}}{2}$$
$$\hat{Y} = \frac{\hat{Q} - \hat{Q}^{\dagger}}{2}$$

This can be verified.

$$\hat{X}^{\dagger} = \frac{\hat{Q}^{\dagger} + \hat{Q}}{2} = \frac{\hat{Q} + \hat{Q}^{\dagger}}{2} = \hat{X}$$
$$\hat{Y}^{\dagger} = \frac{\hat{Q}^{\dagger} - \hat{Q}}{2} = -\frac{\hat{Q} - \hat{Q}^{\dagger}}{2} = -\hat{Y}$$

Reconsider the eigenvalue problems for \hat{A} and \hat{B} .

$$\hat{A}|f_n\rangle = a_n|f_n\rangle$$
 $\hat{B}|g_n\rangle = b_n|g_n\rangle$

Pre-multiply both sides of the left-hand equation by the bra $\langle f_m |$, and pre-multiply both sides of the right-hand equation by the bra $\langle g_m |$. Here $n \neq m$.

$$\langle f_m | \cdot \left(\hat{A} | f_n \right) \rangle = \langle f_m | \cdot a_n | f_n \rangle \qquad \langle g_m | \cdot \left(\hat{B} | g_n \right) \rangle = \langle g_m | \cdot b_n | g_n \rangle$$

$$\left[\left(\langle f_n | \hat{A}^{\dagger} \right) \cdot | f_m \rangle \right]^* = a_n \langle f_m | f_n \rangle \qquad \left[\left(\langle g_n | \hat{B}^{\dagger} \right) \cdot | g_m \rangle \right]^* = b_n \langle g_m | g_n \rangle$$

Use the fact that \hat{A} and \hat{B} are hermitian and anti-hermitian, respectively.

$$\begin{split} \left[\left(\langle f_n | \hat{A} \right) \cdot | f_m \rangle \right]^* &= a_n \langle f_m | f_n \rangle & \left[\left(\langle g_n | -\hat{B} \right) \cdot | g_m \rangle \right]^* = b_n \langle g_m | g_n \rangle \\ &\left[\langle f_n | \cdot \left(\hat{A} | f_m \rangle \right) \right]^* &= a_n \langle f_m | f_n \rangle & \left[- \langle g_n | \cdot \left(\hat{B} | g_m \rangle \right) \right]^* = b_n \langle g_m | g_n \rangle \\ &\left[\langle f_n | \cdot \left(a_m | f_m \rangle \right) \right]^* &= a_n \langle f_m | f_n \rangle & \left[- \langle g_n | \cdot \left(b_m | g_m \rangle \right) \right]^* = b_n \langle g_m | g_n \rangle \\ &\left[a_m \langle f_n | f_m \rangle \right]^* &= a_n \langle f_m | f_n \rangle & \left[-b_m \langle g_n | g_m \rangle \right]^* = b_n \langle g_m | g_n \rangle \\ &a_m^* \langle f_n | f_m \rangle^* &= a_n \langle f_m | f_n \rangle & -b_m^* \langle g_n | g_m \rangle^* = b_n \langle g_m | g_n \rangle \\ &a_m^* \langle f_m | f_n \rangle &= a_n \langle f_m | f_n \rangle & 0 = (b_n + b_m^*) \langle g_m | g_n \rangle \end{split}$$

www.stemjock.com

Since distinct eigenvalues are generally unrelated, $a_n - a_m^* \neq 0$ and $b_n + b_m^* \neq 0$.

$$0 = \langle f_m \,|\, f_n \rangle \qquad \qquad 0 = \langle g_m \,|\, g_n \rangle$$

Therefore, the eigenvectors of a hermitian operator are orthogonal, and the eigenvectors of an anti-hermitian operator are orthogonal. Let \hat{A}_1 and \hat{A}_2 be hermitian operators. Take the hermitian conjugate of their commutator.

$$\begin{bmatrix} \hat{A}_{1}, \hat{A}_{2} \end{bmatrix}^{\dagger} = \left(\hat{A}_{1} \hat{A}_{2} - \hat{A}_{2} \hat{A}_{1} \right)^{\dagger}$$
$$= \left(\hat{A}_{1} \hat{A}_{2} \right)^{\dagger} - \left(\hat{A}_{2} \hat{A}_{1} \right)^{\dagger}$$
$$= \left(\hat{A}_{2}^{\dagger} \hat{A}_{1}^{\dagger} \right) - \left(\hat{A}_{1}^{\dagger} \hat{A}_{2}^{\dagger} \right)$$
$$= \left(\hat{A}_{2} \hat{A}_{1} \right) - \left(\hat{A}_{1} \hat{A}_{2} \right)$$
$$= - \left(\hat{A}_{1} \hat{A}_{2} - \hat{A}_{2} \hat{A}_{1} \right)$$
$$= - \left[\hat{A}_{1}, \hat{A}_{2} \right]$$

Therefore, the commutator of two hermitian operators is anti-hermitian. Let \hat{B}_1 and \hat{B}_2 be anti-hermitian operators. Take the hermitian conjugate of their commutator.

$$\begin{split} \left[\hat{B}_{1}, \hat{B}_{2} \right]^{\dagger} &= \left(\hat{B}_{1} \hat{B}_{2} - \hat{B}_{2} \hat{B}_{1} \right)^{\dagger} \\ &= \left(\hat{B}_{1} \hat{B}_{2} \right)^{\dagger} - \left(\hat{B}_{2} \hat{B}_{1} \right)^{\dagger} \\ &= \left(\hat{B}_{2}^{\dagger} \hat{B}_{1}^{\dagger} \right) - \left(\hat{B}_{1}^{\dagger} \hat{B}_{2}^{\dagger} \right) \\ &= \left[\left(- \hat{B}_{2} \right) \left(- \hat{B}_{1} \right) - \left(- \hat{B}_{1} \right) \left(- \hat{B}_{2} \right) \right] \\ &= \left(\hat{B}_{2} \hat{B}_{1} \right) - \left(\hat{B}_{1} \hat{B}_{2} \right) \\ &= - \left(\hat{B}_{1} \hat{B}_{2} - \hat{B}_{2} \hat{B}_{1} \right) \\ &= - \left[\hat{B}_{1}, \hat{B}_{2} \right] \end{split}$$

Therefore, the commutator of two anti-hermitian operators is also anti-hermitian.